《Measuring urban ecological network resilience: A disturbance scenario simulation method》

打印
作者
Wuyang Hong;Renzhong Guo;Xiaoming Li;Chuangchang Liao
来源
CITIES,Vol.131,Issue1,Article 104057
语言
英文
关键字
作者单位
School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China;Research Institute for Smart Cities, Shenzhen University, Shenzhen 518060, China;School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China;Research Institute for Smart Cities, Shenzhen University, Shenzhen 518060, China
摘要
Human disturbance of urban ecosystems is intensifying, as is ecological fragmentation. As such, effective connections between green spaces must be established and restored to form structurally resilient urban ecological networks. In this study, we focused on indicators of city-scale ecological network resilience. We constructed a network model, analyzed the disturbance simulation results, and identified key nodes. Shenzhen, a megacity in China was selected for empirical research. First, we used Floyd algorithm to extract least-cost paths and then generate the corridor network, constructing an ecological network model with 386 nodes and 4910 edges. Second, focusing on the nodes of the constructed ecological network, we adopted a selected attack strategy to conduct dynamic simulations, using two parameters, network efficiency and maximum connectivity, to evaluate the resilience of the ecological network to changes under various disturbance scenarios. The results showed that the ecological network structure in the study area was relatively stable, and the first 30 % of nodes substantially impacted network resilience. The outcomes reflect the state of urban ecosystems that have been disturbed by socio-economic systems and are practically important for formulating adaptive spatial planning and management policies.